TreProX: Innovations in Training and Exchange of Standards for Wood Processing

# MODERN TRÄBYGGNADSTEKNIK

SIGURDUR ORMARSSON

TREPROX WORKSHOP – SWEDEN - MAY - JUNE 2022











# Wood construction systems – how to use wood and its different alternatives

Marie Johansson RISE, Wood building Technology

# Modelling and testing of light-frame timber modules

Sigurdur Ormarsson Lnu, Department of Building Technology



# Proven technology

- Oldest timber bridge still used for road trafic is from 1737
- The largest timber building is Sävsjö sanatorium built in 1907 with four storeys and almost 100 rooms.
- The largest single span timber building is a warehouse in Landsbro built 1946, 165 m long and 38 m wide.
- The oldest timber building is 800 years and can be found in Eksjö.
- A radio tower of larch from 1936.
   It is **118 meters high** and located in Poland.



# Var i utvecklingsstadiet ligger trähusbyggande?

#### 2007

- **Pilot**: Flervåningsbyggande i trä
- Nisch: Studentbostäder Volymbyggande
- Massmarknad:
  Småhusbyggande
  Hallar
  Idrottsanläggningar

#### 2018

- **Pilot**: Flervåningsbyggande i trä >9 våningar
- **Nisch**: Påbyggnader Kontor
- Massmarknad: Småhusbyggande Flervåningsbyggande i trä Hallar Idrottsanläggningar



SF

# Statistik över antal lägenheter



#### 1. Antal lägenheter i flerbostadshus med stomme av trä

Källa: SCB och TMF



# Typer av byggnader

Småhus



#### Flerbostadshus







#### Lokaler



















# Building systems used in Sweden











# 1. Stud frame

- Description:
  - 70-80% of residential timber framed buildings
  - Prefabricated planar (2D) or volume (3D) elements
  - Many examples up to 5 storey
- Possibilities:
  - High prefabrication level yields short on-site construction time
  - Developed by the single family housing industry with long experience of prefabrication.
  - Full responsibility of the building project is taken by the supplier using portfolio concepts
- Limitations:
  - Vertical pressure and stabilization of horizontal loading a challenge over 6 storey.
  - Weather protection needed at building site



#### Light-frame timber modules







# Stud frame systems - references



Kv. Månstenen (Kalmar) © Willa Nordic – 2010 4 storey





Oslo (N) © Kodumaja – 2011 2 + 5 storey concrete and wood

Skagershuset (Stockholm) © Moelven – 2013 5 storey





#### Lindbäcks Bygg

Flexator

Hjältevadshus Eksjöhus

Obos **Trivselhus** Svensk Husp. RI.

# 2. Massive timber

- Description:
  - CLT walls, floors and roof
  - Up to 12 storey
  - Developed since the year 2000
- Possibilities:
  - Strong
  - Dimensionally stable
  - Planar (2D) elements most common
  - Volumetric (3D) elements still unusual
- Limitations:
  - Difficult to build higher than 12 storey at reasonable cost
  - Adapted weather protection needed at building site







# Massive timber systems - references





Åsbovägen, Fristad © KLH – 2014 6 storey CLT

Vallen, Växjö Binderholz – 2017 8 storey CLT









Valla Berså, Linköping Martinsons – 2017 6 storey CLT

JĽ

# 3. Post and beam

#### Description:

• 3D framework with beams, columns and diagonals Up to 18 storey (Mjöstornet in Norway)

#### Possibilities:

- Developed by the glulam suppliers with long experience from large buildings i.e. sports arenas and bridges.
- Completed with planar (2D) elements or volumetric (3D) elements with different kind of load bearing systems (stud frame, LVL)

#### • Limitations:

- Additional components and materials is needed
- Weather protection needed at building site
- Few suppliers of complete portfolio concepts





Askimstorg, Moelven Trä8-system



# Post and beam systems - references



Askimstorg (Göteborg) © Moelven Töreboda – 2012 6 storey with steel bracing



Treet, Bergen (N) © Moelven Limtre AS – 2015 14 storey









# Lim- och KLträleverantörer i Sverige

Glulam of Sweden L

Moelven Töreboda L

Södra Skogsägarna (KL)



Martinsons L & KL

Setra L (& KL)

Stora Enso (KL)



# Technical development



# Teknikfrågor - Stabilitet



Vertikalt: Reglar

Horisontellt: Skivverkan bjälklag o vägg + förankring



Vertikalt: Massivträskivor

Horisontellt: Skivverkan bjälklag o vägg + förankring

Vertikalt. Limträpelare

**Horisontellt**: Limträfackverk + hisschakt + förankring



## Acoustics and vibrations

- Floor structures
  - Double structures
  - Increase stiffness and mass
  - Measurements and standards
  - Development of calculation methods and tools



Enkel träregelkonstruktion



Dubbel träregelkonstruktion, volymelement



Förstyvade skivor



Skivor med extra massa







**Olsson & Linderholt** 

# Moisture safety

#### Durability and wood protection

- Construction time (Max 16% when built in)
- Service life
- Moisture related deformations due to shrinkage and swelling of the wood





## Fire safety

Same requirements as in all buildings

Calculation models/tools

- Resistance
- Integrity
- Insulation
- Fire safety design
  - Determination of the fire load
  - Evacuation situation
  - Protection against the spread of fire within the building and along the facade
  - Possible efforts from the rescue service







Östman & Just

# **Research in Sustainable Wood Building Technology**

**Department of Building Technology** 

#### Wood material









#### Connections



#### Computational analysis and design of building elements and entire buildings



Laboratory / on-site testing / monitoring of structures

#### New load frame, outdoor laboratory







# Projekt, KK HÖG

# Design av innovativa modulbaserade flervåningshus i trä Avancerad modellering och fullskaleförsök

Projektledare: Sigurdur Ormarsson, Lnu



# **Modular based timber buildings**

**The project** deals with light frame mid-rise modular based timber buildings **up to 4-6 storey.** 

- **Research focus:**
- **1) Numerical modelling** of the global structural behaviour of the building
- 2) Testing of (small) full scale volume modules





# **Motivation and aim of the project**

- A number of house manufacturers are expanding their production to multi-family houses on several floors (up to 4-6 floors).
- We would like to understand better the **overall structural behaviour** of this type of building including **mechanical joints** between the volume modules.
- The **aim** is to create an **effective and flexible simulation model** able to simulate **overall (and detailed) structural behavior** of (light frame) modular based **multi-storey** timber buildings.
- The model needs to be fully **parametrized** and experimentally verified at different structural levels.
- The numerical and experimental results from this research project will be used as a base to improve and optimize the **design of modular based timber structures**.





# **Experimental study (8 test-modules)**



# **Experimental test setup**

#### Module 1



# **Deformed modules**

#### Module 2





# **Typical results from the experiments**



# **Parametrised modelling using structural elements**



- Wood members are modelled with 3D beam elements.
- Sheathing boards are modelled with shell elements.
- **Fasteners** are modelled with beam elements which are connected to the frame and sheathing boards with nonlinear connector elements.



Number of connector elements = 12888

# Komponentbeskrivning

![](_page_37_Figure_1.jpeg)

| Beskrivning       | Beteck. | Bxh<br>(mm) | L<br>(mm) | H-klass | Antal | Anmärkning |
|-------------------|---------|-------------|-----------|---------|-------|------------|
| Reglar (LV)       | T1      | 45 x 170    | 2915      | C 24    | 9     |            |
| Spikreglar (LV)   | T2      | 45 x 120    | 2442      | C 24    | 2     |            |
| Kortreglar (LV)   | T3      | 45 x 170    | 535       | C 24    | 6     |            |
| Kortreglar (LV)   | T4      | 45 x 170    | 790       | C 24    | 3     |            |
| Kortreglar (LV)   | T5      | 45 x 170    | 190       | C 24    | 3     |            |
| Syll/hamm (LV)    | T6      | 45 x 170    | 3600      | C 24    | 2     |            |
| Infälld bräda(LV) | T7      | 22 x 120    | 1765      | C 24    | 2     |            |
| Infälld bräda(LV) | T8      | 22 x 120    | 825       | C 24    | 2     |            |
| Fönsterbalk (LV)  | T9      | 45 x 170    | 1000      | C 24    | 2     |            |
| Dörrbalk (LV)     | T10     | 45 x 170    | 1010      | C 24    | 2     |            |
| Reglar (KV)       | T11     | 45 x 95     | 2915      | C 24    | 5     |            |
| Syll/hamm (KV)    | T12     | 45 x 95     | 1200      | C 24    | 2     |            |
| Infälld bräda(KV) | T13     | 22 x 120    | 1200      | C 24    | 2     |            |
| Långbalkar(TB)    | T14     | 45 x 150    | 3320      | C 24    | 2     |            |
| Långbrädor(TB)    | T15     | 22 x 45     | 3454      | C 24    | 2     |            |
| Långbrädor(TB)    | T16     | 28 x 70     | 3454      | C 24    | 2     |            |
| Tvärbalkar(TB)    | T17     | 45 x 150    | 1200      | C 24    | 2     |            |
| Tvärbrädor(TB)    | T18     | 22 x 45     | 1200      | C 24    | 2     |            |

![](_page_37_Figure_3.jpeg)

| Nr. | Beskrivning          | Beteck.    | t<br>(mm) | LxH<br>(mm)                    | Material  | Antal | Anmärknin |
|-----|----------------------|------------|-----------|--------------------------------|-----------|-------|-----------|
| 1   | Ytter/Innerlager(LV) | S1         | 15        | 697 x<br>2552                  | Gips DB   | 4     |           |
| 2   | Ytter/Innerlager(LV) | S2         | 15        | 1010+97+<br>1000 x<br>1500+419 | ~         | 4     |           |
| 3   | Ytter/Innerlager(LV) | S3         | 15        | 540 x<br>2550                  | "         | 4     |           |
| 4   | Ytter/Innerlager(LV) | S4         | 15        | 1097 x<br>633                  | "         | 4     |           |
| 9   | Ytterlager(KV)       | S5         | 15        | 1200 x<br>2552                 | "         | 2     |           |
| 10  | Innerlager(KV)       | S6         | 15        | 1200 x<br>2552                 | "         | 2     |           |
| 11  | Ytterlager(TB)       | S7         | 13        | 1200 x<br>1200                 | Gips DN   | 3     |           |
| 12  | Innerlager(TB)       | S8         | 15        | 1200 x<br>1200                 | Gips DB   | 3     |           |
| 13  | Enkellager(GB)       | <b>S</b> 9 | 22        | 1200 x<br>3410                 | Spånskiva | 2     |           |
| 14  | Enkellager(LV)       | S10        | 9         | 825 x<br>3000                  | Ute Gips  | 2     |           |
| 15  | Enkellager(LV)       | \$11       | 9         | 2107 x<br>622,5                | "         | 2     |           |
| 16  | Enkellager(LV)       | \$12       | 9         | 1097 x<br>877,5                | "         | 2     |           |
| 17  | Enkellager(LV)       | S13        | 9         | 97 x 1500                      | "         | 2     |           |
| 18  | Enkellager(LV)       | S14        | 9         | 97 x 1500                      | "         | 2     |           |
| 19  | Enkellager(LV)       | S15        | 9         | 1010 x<br>277                  | "         | 2     |           |

![](_page_37_Figure_5.jpeg)

|    | Destricting          | Beteck. | Тур   | Längd<br>(mm) | Diameter<br>(mm) | c/c<br>distans | Antal<br>i rad | Anmärkningar  |
|----|----------------------|---------|-------|---------------|------------------|----------------|----------------|---------------|
| 1  | Gips-regel(LV)       | F1a     | Skruv | 55            | 3,9              | 200            |                | Kantreglar    |
| 2  | Gips-regel(KV)       | F1b     | Skruv | 50            | 3,9              | 200            |                | Kantreglar    |
| 3  | Gips-regel(KV)       | F1c     | Skruv | 50            | 3,9              | 300            |                | Mittenreglar  |
| 4  | Gips-regel(LV)       | F1d     | Skruv | 40            | 3,9              | 200            |                | Mittenreglar  |
| 5  | Gips-regel(LV)       | F1e     | Spik  | 35            | 3                | 200            |                | Ute gips      |
| 6  | Regel-dörrbalk(LV)   | F2      | Spik  | 90            | 3.1              |                | 3              |               |
| 7  | Regel-syll/ham(LV)   | F3a     | Spik  | 90            | 3,1              |                | 4              |               |
| 8  | Regel-syll/ham(KV)   | F3b     | Spik  | 90            | 3,1              |                | 2              |               |
| 9  | Balk-kortregel(LV)   | F4      | Spik  | 90            | 3,1              |                | 4              |               |
| 10 | Regel-regel (LV)     | F5a     | Spik  | 90            | 3,1              | 300            | 1              | Mellan T11-T2 |
| 11 | Regel-regel(KV)      | F5b     | Spik  | 90            | 3,1              | 200            | 1              |               |
| 12 | Regel-regel (LV)     | F5c     | Spik  | 90            | 3,1              | 350            | 3              |               |
| 13 | Regel-regel (HF)     | F5d     | Skruv | 140           | 6                | 600            | 1              | Snett skruvat |
| 14 | Skivor-tvärbräda(TB) | F6      | Skruv | 50            | 3,9              | 200            |                |               |
| 15 | Skivor-longbalk(GB)  | F7a     | Spik  | 90            | 3,1              | 300            |                |               |
| 16 | Skivor-longbalk(GB)  | F7b     | Spik  | 90            | 3,1              | 200            |                |               |
| 17 | Balk-balk (TB)       | F8      | Spik  | 90            | 3.1              |                | 2              |               |
| 18 | Balk-balk (GB)       | F9      | Skruv | 160           | 6,5              |                | 2              |               |
| 19 | Reglar-takbalk(LV)   | F10     | Skruv | 220           | 6                |                | 1              |               |
| 20 | Reglar-takbalk(KV)   | F11     | Skruv | 140           | 6                |                | 1              |               |
| 21 | Reglar-golvbalk(LV)  | F12     | Skruv | 220           | 6                |                | 2              | Innerreglar   |
| 22 | Reglar-golvbalk(KV)  | F13     | Skruv | 160           | 6,5              |                | 2              | Snett skruvat |
| 23 | Regel-spikregel (LV) | F14     | Spik  | 60            | 2,8              |                | 4              |               |
| 24 | Longbräda-balk(TB)   | F15     | Spik  | 70            | 2,5              |                | 2              |               |

# **Modelling of the module type 1**

![](_page_38_Picture_1.jpeg)

![](_page_38_Picture_2.jpeg)

The test results are used for model ve

![](_page_38_Picture_5.jpeg)

# **Model verification**

![](_page_39_Figure_1.jpeg)

Modelling work by Le Kuai

![](_page_39_Figure_3.jpeg)

# **Modelling of two module structure**

 Influence of openings and friction on the global structural stiffness

![](_page_40_Picture_2.jpeg)

High friction and mechanical joints between Linnæus University 2022 ume modules

![](_page_40_Picture_4.jpeg)

volume modules

# **Test results on friction joints between modules**

![](_page_41_Figure_1.jpeg)

### Formas projekt

Utveckling av effektiva digitaliseringshjälpmedel för design och industrialisering av hållbara volymbaserade flervåningshus i trä

Projektledare: Johan Vessby, Karlstads Universitet

![](_page_42_Picture_3.jpeg)

![](_page_42_Picture_4.jpeg)

![](_page_42_Picture_5.jpeg)

![](_page_42_Picture_6.jpeg)

Derome

![](_page_42_Picture_7.jpeg)

Research Institutes of Sweden

FORMAS

# Planerade experimentella försök

Principillustration planerade experimentella försök

![](_page_43_Figure_2.jpeg)

rimentella försök planeras under h

Fullskaliga experimentella försök planeras under ht -22. Syfte:

- Vilken styvhet finns i fullstora volymer belastade på liknande sätt som i en verklig flervåningsbyggnad?
- För vilken horisontell last får man sprickor i anslutning till öppningar?
- Eventuellt brottlast på någon volym.

![](_page_43_Figure_8.jpeg)

# Pågående modelleringsarbete

Y,

![](_page_44_Figure_1.jpeg)

belastning av

(b) (c)Inner laver Area of interest Outer layer [mm] (55) <u>(56)</u> 57 (53) 54) 44 (58) (52) ossible cracl 2096 (51) 455 565 910 813 1165 1117 668 1200 (d) (e) Increasing load, H [kN] Simulering av sprickbildning i

![](_page_44_Figure_3.jpeg)

# Lastnedräkning och dimensionering enligt EC5 i typhus

#### Typhus

![](_page_45_Figure_2.jpeg)

#### Lastnedräkning och dimensionering i Mathcad Prime

| ra     | Friktionskontroll              |                                                                      |                                                                                          |  |  |  |  |
|--------|--------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------------------|--|--|--|--|
| å      | Värden och formler<br>sid B43. | hämtade från Formler och tabe                                        | ller för byggkonstruktion enl eurkoderna, utgåva Nov 2019 se                             |  |  |  |  |
|        |                                | Dimensionerande truckk                                               | raffekapacitet träregel                                                                  |  |  |  |  |
|        | Alla ytor vinkelrätt           | Engles binderande frig Basel och formelanding förde underen sid 120  |                                                                                          |  |  |  |  |
|        | vindriktningen                 | Formier namtade tran Regel och formelsamling fjärde upplagan sid 130 |                                                                                          |  |  |  |  |
| ă<br>V | Alla ytor parallelit i         | Indata                                                               |                                                                                          |  |  |  |  |
| ł.     | vindriktningen                 |                                                                      |                                                                                          |  |  |  |  |
|        |                                | Hojd traregel                                                        | h <sub>c</sub> := h <sub>vliggrugsl.plant</sub>                                          |  |  |  |  |
|        | Friktionskontroll              |                                                                      |                                                                                          |  |  |  |  |
|        | Formler&Tabeller               | Tväsnittsarea pelare                                                 | $\Lambda_{pel} = \mathbf{b}_{tviar} \cdot \mathbf{h}_{tviar} = (4.28 \cdot 10^3) \ mm^2$ |  |  |  |  |
|        | (Rennstrom) sid B              | Tryck parallelt fibrema                                              | $f_{c,n_1} = 21 \cdot MPa$                                                               |  |  |  |  |
|        |                                |                                                                      |                                                                                          |  |  |  |  |
| ł.     | Friktionskoefficien            | Faktor knäcklängd                                                    | $\beta = 1$                                                                              |  |  |  |  |
|        | Formler&Tabeller               | Faktor konstrukionsvirke                                             | $\beta_c = 0.2$                                                                          |  |  |  |  |
| 1      | (Rehnström) sid B              |                                                                      |                                                                                          |  |  |  |  |
| 1      |                                |                                                                      | k <sub>mod</sub> = 0.8                                                                   |  |  |  |  |
| 1      | +                              |                                                                      |                                                                                          |  |  |  |  |
|        | Eriktionearea                  | Partialkoefficient se s117                                           | $\gamma_M \approx 1.3$                                                                   |  |  |  |  |
|        | Filkuolisaica                  |                                                                      |                                                                                          |  |  |  |  |
|        |                                | E-modul, 0,05-fraktilen                                              | $E_{0.05} = 7400 \cdot MPa$                                                              |  |  |  |  |
|        | Friktionskraften or            |                                                                      |                                                                                          |  |  |  |  |
|        | den ska beaktas                | Beräkningar                                                          |                                                                                          |  |  |  |  |
|        |                                | Dim tryckhållfasthet                                                 | $f_{r,n,d} = \frac{k_{mod} \cdot f_{c,0,k}}{12.92 MPa}$                                  |  |  |  |  |
|        |                                | parallellt fibrema                                                   | °ски ?тм                                                                                 |  |  |  |  |
|        | Total vindlast gave            |                                                                      |                                                                                          |  |  |  |  |
|        | iotar mididət gave             | Effektiv längd pelare                                                | $L_{eff} = \beta \cdot h_e = (2.92 \cdot 10^3) mm$                                       |  |  |  |  |
|        |                                |                                                                      |                                                                                          |  |  |  |  |
|        |                                |                                                                      | bouthers" .                                                                              |  |  |  |  |
|        |                                | Tröghetsmoment, y-axeln                                              | $I_y = \frac{12}{12} = (3.22 \cdot 10^6) mm^4$                                           |  |  |  |  |
|        |                                |                                                                      |                                                                                          |  |  |  |  |
|        |                                |                                                                      | hour book                                                                                |  |  |  |  |
|        |                                | Tröghetsmoment, z-axeln                                              | $I_{g} = \frac{12}{12} = (7.21 \cdot 10^{5}) mm^{4}$                                     |  |  |  |  |
|        |                                |                                                                      |                                                                                          |  |  |  |  |
|        |                                |                                                                      | J Ir                                                                                     |  |  |  |  |
|        |                                |                                                                      | $y = \sqrt{\frac{1}{A}} = 27.42 \text{ mm}$                                              |  |  |  |  |

![](_page_45_Figure_5.jpeg)

- Tryck vinkelrätt syll i bottenvåning
- Knäckning av regel i bottenvåning
- Global jämvikt
- Vartikala

# Lab för långtidsbelastning, ca 40 belastningspositioner

![](_page_46_Figure_1.jpeg)

![](_page_46_Picture_2.jpeg)

Långtidslab

![](_page_46_Picture_4.jpeg)

![](_page_46_Picture_5.jpeg)

December -21,

Tryck perp.

![](_page_46_Picture_8.jpeg)

![](_page_46_Picture_9.jpeg)

November -21,